Semi-supervised Statistical Approach for Network Anomaly Detection

نویسندگان

  • Naila Belhadj Aissa
  • Mohamed Guerroumi
چکیده

Intrusion Detection Systems (IDS) have become a very important defense measure against security threats. In recent years, computer networks are widely deployed for critical and complex systems, which make them more vulnerable to network attacks. In this paper, we propose a two-stage Semi-supervised Statistical approach for Anomaly Detection (SSAD). The first stage of SSAD aims to build a probabilistic model of normal instances and measures any deviation that exceeds an established threshold. This threshold is deduced from a regularized discriminant function of Maximum Likelihood (ML). The purpose of the second stage is to reduce False Alarm Rate (FAR) through an iterative process that reclassifies anomaly cluster, from the first stage, using a similarity distance and anomaly’s cluster dispersion rate. We evaluate the proposed approach on the well-known intrusion detection dataset NSL-KDD and Kyoto 2006+. The experimental results show that SSAD outperforms the Naïve Bayes methods in terms of Detection Rate and False Positive Rate. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Conference Program Chairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling Intrusion Detection System using Snort Based Statistical Algorithm and Semi-supervised Approach

Intrusion detection system aims at analyzing the severity of network in terms of attack or normal one. Due to the advancement in computer field, there are numerous number of threat exploits attack over huge network. Attack rate increases gradually as detection rate increase. The main goal of using data mining within intrusion detection is to reduce the false alarm rate and to improve the detect...

متن کامل

Finding Anomaly With Fuzzy C-means ANN Using Semi-Supervised Approach

The FC-ANN (Artificial Neural Network) is used to speed up the technique. The anomaly Outlier detection is primary in various data-mining applications. Outlier detection methods have been suggested for number of application such as, fraud detection, voting irregularity analysis, data cleansing, clinical trials, network intrusion, severe weather prediction, geographic information system, credit ...

متن کامل

Moving dispersion method for statistical anomaly detection in intrusion detection systems

A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...

متن کامل

Sub-Space Clustering, Inter-Clustering Results Association & Anomaly Correlation for Unsupervised Network Anomaly Detection

Network anomaly detection is a critical aspect of network management for instance for QoS, security, etc. The continuous arising of new anomalies and attacks create a continuous challenge to cope with events that put the network integrity at risk. Most network anomaly detection systems proposed so far employ a supervised strategy to accomplish the task, using either signature-based detection me...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016